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An interpretat ion is given of some experimental  resul ts  on the effects of initial conditions on 
the cel lular  s t ruc ture  of convective motion. 

Much detail is available about the conditions for convection in an unbounded horizontal  layer  of liquid; 
however,  the details of this ex t remely  interest ing motion continue to a t t rac t  experimental  attention. 

A recent  Japanese study [1] deals with the effects of initial conditions on the pa rame te r s  of the ce l -  
lular  s t ruc ture  in a horizontal  l ayer  of liquid; the top of the chamber ,  which was filled with silicone oil, 
was kept at a constant  tempera ture .  The heating was provided by infrared radiation coming through the 
mica  base. It was found that a cel lular  s t ruc ture  with a cell  size of about 2.3 units in t e r m s  of the layer  
thickness H was established if there  was no perturbing grat ing under the base. If the initial circulat ion 
was charac te r i zed  by pa rame te r s  of 3, 2.4, or  2, then there  was no major  modification in the cel lular  
s t ructure  af ter  removing the per turbing grating. On the other hand, analogous experiments  with initial 
cell pa r ame te r s  above 3.5 or  less  than 2 produced a change in the initial s t ruc ture  and formation of new 
cel ls  with pa rame te r s  f rom 2 to 2.5 when the grat ing was removed.  

The following model is used in a mathematical  interpretat ion of these resul ts .  If we assume that the 
heater  t empera ture  is considerably  above the oil t empera ture ,  then the radiative heat t r ans fe r  can be 
represented  as a constant heat flux at the boundary, so we can assume that the conditions cor respond  to the 
general ized Rayleigh case  for  a horizontal  layer  of liquid bounded by solid plates,  with boundary conditions 
of the f i rs t  kind at the top and of the second kind at the bottom. 

We handle the problem within the smal l -per turba t ion  approximation of the theory of hydrodynamic 
stabil ity. 

A formulat ion of the problem can be found in [2]; here  we mere ly  note that the boundury conditions 
for  the tempera ture  perturbat ion amplitude may be put as 

T w O  at z = - H ,  ---.dT ::-0 at z~() ,  
dz (1) 

where z is the ver t ica l  coordinate with its origin at the lower surface,  H is the height of the liquid layer ,  
and T is the amplitude of the t empera tu re  perturbation.  

It is possible to es t imate  [2] the cr i t ical  value for  the wave number M* in this case;  this should lie 
between the maximum value M* ~ 3.2, which cor responds  to zero boundary conditions for  the t empera tu re  p e r -  
turbation, and the maximum value M* ~ 1.2 corresponding to zero  boundary conditions for  the derivative 
of the t empera tu re  perturbation.  The corresponding wave numbers  for  the cell size in units of H are about 
2 and 5.2. 

A fuller study of the conditions for  instability, and also of the possible s teady-s ta te  motion (neutral 
perturbations)  requi res  a solution to the corresponding problem for  the eigenvalues for the boundary 
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Fig. 1. F i r s t  eigenvalue ~, as a function of R for  var ious  M 
(numbers on curves) for P r  of 20 (solid lines) and 50 (broken 
lines). 

conditions and tempera ture  perturbation of (1). We use the numberieal  method of [3], and the following are  
some basic points f rom this. 

We use a fully stabilized power - se r i e s  method f rom l inear  algebra to const ruct  an invariant sub-  
space containing the f i r s t  three eigenvectors  for  the problem, the approximate values for these vec to rs  
are  determined f rom the corresponding fini te-difference equations. The coordinate dependence of the ap-  
proximations at each step in t ime is found via matr ix  methods .  The cha rac te r i s t i c s  for  the neutral pe r -  
turbations are  determined by setting the f i rs t  eigenvalue equal to zero. 

A Minsk-22 computer  was used in numerical  realization. 

The silicone oil had a melting point of --70~ and a boiling point of 2820C [4], so the convective in- 
stability is best discussed i n  the range 80-200~ and for this purpose we made calculations for two values 
of the Prandt l  number:  P r  = 50 and P r  = 20. The tempera ture  dependence of the lat ter  was neglected. 
The nonuniformity in the p a r a m e t e r s  due to the tempera ture  dependence usually has little effect on the s ta -  
bility and mere ly  resul ts  in slight shift in the cr i t ical  pa rame te r s  (section 6 of [5]). 

Figure 1 shows resul ts  for  the f i rs t  eigenvalue ~'l in relation to the Rayleigh number R for var ious M; 
it is c lear  that ~tois l inearly dependent on R within the range of the lat ter ,  and also that R is not dependent 
on the prandt l  number  for neutral perturbat ions (the points of intersection of the graphs with the horizontal 
line ~'1 = 0). The la t ter  result  a r i s e s  because the initial equations did not incorporate  the tempera ture  de- 
pendence of the viscosi ty .  

The second and third eigenvalues are negative in the above range in Rayleigh number; the following 
are values for  R = 100 and M = 2.5: 

~L = --0.042, ~ = --0~517, L a = - -  1.348 for Pr  = 50; 

)~1 = 0.105, k S = - -  1.291, ~3= --3.367 for Pr = 20. 

TABLE 1. Values of R in Relation to M for Neutral Per turba t ions  
with Step Sizes h in Fini te-Difference Approximation for  P r  = 20 

M 

h �9 
2,50 2,55 2,60 2,65 

0,01 
0,00625 
0,005 
0,003448 

1290,5 
1293,0 
1293,8 
1294,3 

1290,0 
1292,4 
1293.1 
1294,0 

1.290,4 
1292,9 
1293,4 
1294,7 

1291,9 
1294,3 
1295,0 
1296,4 
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The R = f(M) c u r v e  f o r  n e u t r a l  p e r t u r b a t i o n s  w a s  c a l c u l a t e d  with  h = 0.01 f o r  the  s t e p  in the  f i n i t e - d i f -  
f e r e n c e  a p p r o x i m a t i o n ;  the  r e g i o n  of the  m i n i m u m  on t h i s  c u r v e  was  c a l c u l a t e d  with  v a r i o u s  v a l u e s  f o r  h 
(Table  1). The c r i t i c a l  v a l u e s  a r e  c o r r e s p o n d i n g l y  R *  = 1294, M *= 2.57; the  l a t t e r  r e s u l t  g i v e s  the  h o r i -  
zon ta l  s c a l e  L of the  c e l l u l a r  s t r u c t u r e  a s  L = 27r/M* ~ 2.44, which  in g e n e r a l  a g r e e s  we l l  wi th  the  above  
e x p e r i m e n t a l  r e s u l t s .  

1. 

2. 
3. 
4. 

5. 

LITERATURE CITED 

Ogura Yoshtmitsu and Tsu Hiroji, J. Meteorol. Soc. Jap., 48, No. 5, 400-403 (1970). 
E. A. Romashko, Inzh.-Fiz. Zh., 17, No. 2 (1969). 
E. A. Romashko, Inzh.-Fiz. Zh., 22__, No. 4 (1972). 
N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], 
GIFML, Moscow (1963). 
G. Z. Gershun and E. M. Zhukhovitskii, Convective Instability of an Incompressible Liquid [in Rus- 
sian], GIFML, Moscow (1972). 

411 


